oW N —

Introduction to File Handling in Java

Marcin Kurzyna

December 10, 2024

Contents

1__Introduction| 1

2 Reading from a File 1
2.1 Example Code|. 1
[2.2 Explanation| 2

[3 Writing to a File 2
3.1 Example Code|. 2
13.2 Explanation| 3

[4 Best Practices for File Handling| 3

1 Introduction

File handling is a key skill that allows programmers to store, retrieve, and manage data
persistently. This document describes:

e How to read data from a file.
e How to write data to a file.

e Best practices for file handling in Java.

2 Reading from a File
To read data from a file in Java, the Scanner class or the BufferedReader class can be

used. Below is an example demonstrating how to use Scanner to read data from a text
file.

2.1 Example Code

// Import required classes

import java.io.File;

import java.io.FileNotFoundException;
import java.util.Scanner;

public class ReadFileExample {
public static void main(String[] args) {

try {
File file = new File("example.txt");
Scanner scanner = new Scanner (file);

// Read data line by line

while (scanner.hasNextLine()) {
String line = scanner.nextLine();
System.out.println(line);

scanner.close () ;
} catch (FileNotFoundException e) {
System.out.println("File not found:
)

+ e.getMessage ()

2.2 Explanation

e File class is used to represent the file.
e Scanner reads the file line by line.

e The FileNotFoundException is handled to manage errors when the file is missing.

3 Writing to a File

Writing data to a file is essential for storing output or logs. Java provides the FileWriter
and BufferedWriter classes for this purpose.

3.1 Example Code

// Import required classes
import java.io.FileWriter;
import java.io.IOException;

public class WriteFileExample {
public static void main(String[] args) {
try {
FileWriter writer = new FileWriter ("output.txt");

// Write data to the file
writer.write("Hello, World!\n");
writer.write("This is a test file.\n");

writer.close () ;
System.out.println("Data successfully written to file.
")
} catch (IOException e) {
System.out.println("An error occurred: " + e.
getMessage ());

3.2 Explanation

e FileWriter creates or overwrites a file.
e The write() method is used to write data to the file.

e The I0Exception is handled to manage errors during file operations.

4 Best Practices for File Handling

e Always close file streams to avoid memory leaks.
e Use try-with-resources for automatic resource management.

e Handle exceptions gracefully to prevent application crashes.

For further reading, visit the official Java documentation: Java File I/O Tutorial.

https://docs.oracle.com/javase/tutorial/essential/io/

	Introduction
	Reading from a File
	Example Code
	Explanation

	Writing to a File
	Example Code
	Explanation

	Best Practices for File Handling

