
Abstract Classes and Interfaces in Java

Introduction

In Java, both abstract classes and interfaces are used to achieve abstrac-
tion, which allows developers to define methods that must be implemented
by subclasses or implementing classes. Although they share similarities, they
serve different purposes and have distinct characteristics.

Abstract Classes

An abstract class in Java is a class that cannot be instantiated. It can con-
tain both abstract methods (without implementations) and concrete meth-
ods (with implementations). Abstract classes are defined using the abstract
keyword.

Characteristics of Abstract Classes

• Can have both abstract and non-abstract methods.

• Can have constructors.

• Can have instance variables.

• A subclass can extend only one abstract class (single inheritance).

Example of an Abstract Class

1 // Abstract class

2 abstract class Animal {

3 String name;

1



4

5 // Constructor

6 Animal(String name) {

7 this.name = name;

8 }

9

10 // Abstract method

11 abstract void makeSound ();

12

13 // Concrete method

14 void eat() {

15 System.out.println(name + " is eating.");

16 }

17 }

18

19 // Subclass

20 class Dog extends Animal {

21 Dog(String name) {

22 super(name);

23 }

24

25 @Override

26 void makeSound () {

27 System.out.println("Woof! Woof!");

28 }

29 }

Interfaces

An interface in Java is a reference type that contains abstract methods and
static constants. Interfaces are implemented by classes using the implements
keyword.

Characteristics of Interfaces

• All methods are implicitly public and abstract (except default and
static methods).

• Cannot contain constructors.

2



• Can have static and default methods (from Java 8 onwards).

• A class can implement multiple interfaces (multiple inheritance).

Example of an Interface

1 // Interface

2 interface Vehicle {

3 int getNumberOfWheels ();

4 void drive ();

5 }

6

7 // Implementing class

8 class Car implements Vehicle {

9 @Override

10 public int getNumberOfWheels () {

11 return 4;

12 }

13

14 @Override

15 public void drive() {

16 System.out.println("Driving a car ...");

17 }

18 }

19

20 // Another implementing class

21 class Bicycle implements Vehicle {

22 @Override

23 public int getNumberOfWheels () {

24 return 2;

25 }

26

27 @Override

28 public void drive() {

29 System.out.println("Riding a bicycle ...");

30 }

31 }

3



Differences Between Abstract Classes and In-

terfaces

Feature Abstract Class Interface
Method Types Abstract and Concrete Abstract, Default, and Static
Variables Instance, Final, Static Static and Final only
Inheritance Single inheritance Multiple inheritance
Constructors Allowed Not allowed

Exercises

1. Abstract Class Exercise: Create an abstract class Shape with two
abstract methods: calculateArea() and calculatePerimeter(). Im-
plement concrete subclasses Circle and Rectangle to provide specific
implementations for these methods. Test your code with different in-
puts.

2. Interface Exercise: Design an interface Playable with a method
play(). Create classes Piano and Guitar that implement the interface.
Write a program that uses a list of Playable objects to invoke the
play() method.

3. Comparison Exercise: Write a Java program that uses both an ab-
stract class and an interface. Create an abstract class Appliance with
a method turnOn(), and an interface EnergyEfficient with a method
calculateEfficiency(). Implement these in a class WashingMachine.

4. Interface with Default Methods Exercise: Create an interface
Logger with a default method log(String message) that prints a
message with a timestamp. Create a class FileLogger that implements
Logger and overrides the logmethod to write messages to a file instead.

4


