
Classes

1 Introduction

Java is an object-oriented programming language, meaning it focuses on creating
objects that contain both data and methods to manipulate that data. The main
elements of object-oriented programming are classes, objects, methods, fields,
and inheritance.

2 Classes

A class in Java serves as a blueprint that defines the properties and behavior
of objects. It consists of fields (variables) and methods that manipulate these
fields. Here’s an example of a class definition:

public class Person {

String name;

int age;

public void introduceYourself() {

System.out.println("Hello, my name is " + name);

}

}

3 Class Fields

Class fields (also called attributes or properties) are variables that store infor-
mation about objects of a given class. In the example above, name and age are
fields of the Person class.

4 Methods

Methods are functions defined within a class that perform specific operations
on objects of that class. Each method has a signature, which includes the
method’s name, return type, and parameter list. An example of a method is
introduceYourself(), which outputs a message to the console.

1



public void introduceYourself() {

System.out.println("Hello, my name is " + name);

}

5 Access Modifiers

Access modifiers specify the level of accessibility for classes, methods, and fields.
Java has the following access modifiers:

• public - accessible from any class,

• protected - accessible within the same package and by subclasses,

• private - accessible only within the same class,

• package-private (no modifier) - accessible only within the same package.

Example:

public class Person {

private String name;

protected int age;

}

6 Inheritance

Inheritance allows you to create a new class based on an existing class, so the
new class inherits the fields and methods of the base class. The extends keyword
is used to indicate that a class is derived from another class.

Example:

public class Student extends Person {

int studentId;

public void introduceYourself() {

System.out.println("Hello, I am a student, my name is " + name);

}

}

The Student class inherits fields and methods from the Person class but also
has its own field studentId and an overridden introduceYourself() method.

7 Exercises

To practice and reinforce these concepts, try solving the following exercises:

2



1. Define a Car class with fields for make (String), model (String), and year

(int). Add a method displayInfo() that prints out the details of the car.

2. Modify the Car class so that make and model are private fields. Add
getter and setter methods to access and modify these fields from outside
the class.

3. Create a new class ElectricCar that extends the Car class. Add an addi-
tional field batteryCapacity (int). Override the displayInfo() method
to include information about the battery capacity.

4. In the ElectricCar class, add a second displayInfo() method that ac-
cepts a parameter for displaying the battery capacity in kilowatt-hours
(kWh).

5. Write a main method to create an instance of ElectricCar, set its fields
using the constructor and setter methods, and call displayInfo().

3


